

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

EXPLORATION OF NANOMETER COGNITIVE REASONING VERY
LARGE SCALE INTEGRATION (VLSI) COMPUTER ARCHITECTURES

OKLAHOMA STATE UNIVERSITY

APRIL 2012

FINALTECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-134

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-134 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / s / / s /
THOMAS RENZ PAUL ANTONIK, Technical Advisor
Work Unit Manager Computing & Communications Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

NOV 2008 – NOV 2011
4. TITLE AND SUBTITLE

EXPLORATION OF NANOMETER COGNITIVE
REASONING VERY LARGE SCALE INTEGRATION
(VLSI) COMPUTER ARCHITECTURES

5a. CONTRACT NUMBER
FA8750-09-2-0036

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

James E. Stine, Jr.

5d. PROJECT NUMBER
OKLC

5e. TASK NUMBER
CC

5f. WORK UNIT NUMBER
09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Oklahoma State University
School of Electrical and Computer Engineering
202 Engineering South
Stillwater, OK 74078

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-134

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88 ABW-2012-2306
Date Cleared: 16 Apr 2012
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objectives of this work were to design, develop, and evaluate support for the design of low-power hardware
computer architectures at the Very Large Scale Integration (VLSI) level. The objectives were realized by achieving
complete design flow integration with commercial and open-source Electronic Design Automation tools. The design
flow takes as inputs a high-level system-level architecture description, along with area, critical path delay, and power
dissipation constraints. Based on the System on Chip architecture description and design constraints, the tools
automatically generate synthesizable Hardware Descriptive Language (HDL) models, embedded memories, and custom
components to implement the specified VLSI architecture. Simulation results showed significant improvement over
previous approaches with respect to power dissipation and leakage reduction.
15. SUBJECT TERMS

Design Flow, Design Tools, Electronics Design Automation tools, VLSI design, System on a Chip design, Low Power Processor
design
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF RESPONSIBLE PERSON
THOMAS E. RENZ

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

LIST OF FIGURES AND TABLES .. ii
1. SUMMARY ... 1

2. INTRODUCTION... 2

3. METHODS, ASSUMPTIONS and PROCEDURES ... 5
3.1 IBM Standard Cell Libraries ... 8
3.2 Architecture Design Decisions for Lower Power Dissipation ... 15

4. RESULTS AND DISCUSSION ... 18

5. CONCLUSIONS ... 20

6. REFERENCES .. 21

LIST OF ACRONYMS .. 23

ii

LIST OF FIGURES AND TABLES
Figure 1. Pitch Examples ... 10

Figure 2. Stacked Vias ... 11

Figure 3. Example Pitch Definitions .. 11

Figure 4. Proposed Design Flow using Commercial-based EDA tools 13

Figure 5. 32-bit x 32 word Single Write/Read Port Layout ... 14

Figure 6. Place/Routed 500 MHz MIPS Processor Using Proposed Design Flow 17

Figure 7. Final Layout for July 2010 T using IBM CMOS 10LPe Technology 19

Table 1. IBM CMOS10SF 65 nm Pitch Definitions .. 13

Table 2. Basic Foundation Flow Script Flow (in order of running) 16

Table 3. Area/Delay Results for Sample Designs .. 18

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1

1. SUMMARY

The objectives of this work were to design, develop, and evaluate support for design of
low-power hardware computer architectures at the Very Large Scale Integration (VLSI)
level. The objectives were realized by achieving complete design flow integration with
commercial and open-source Electronic Design Automation tools. The design flow takes
as inputs a high-level system-level architecture description, along with area, critical path
delay, and power dissipation constraints. Based on the System on Chip architecture
description and design constraints, the tools automatically generate synthesizable
Hardware Descriptive Language (HDL) models, embedded memories, and custom
components to implement the specified VLSI architecture. Simulation results showed
significant improvement over previous approaches with respect to power dissipation and
leakage reduction.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
2

2. INTRODUCTION

Advances in parallel processing, Very Large Scale Integration (VLSI) technology, and
computer architecture have led to high performance computer systems. Modern
microprocessors are capable of executing over several hundred million floating-point
operations per second, and supercomputer systems, capable of executing more than a
trillion operations per second, are currently being developed [1]. Along with this, greater
reliance is being placed on the simulation results produced by these computer systems.
Computer simulations play an important role in almost every aspect of science and
engineering, including research in computational fluid dynamics, weather forecasting,
VLSI circuit design, manufacturing, and modeling in chemistry, physics, and biology.

The large number of arithmetic operations and the reliance placed on computer systems
make it extremely important to design, evaluate, and implement architectures efficiently
for a given objective. Unfortunately, most computer systems are complicated by the
requirement to provide significant processing performance while still maintaining
adequate environmental constraints for power dissipation and power/clock distribution.
This is further complicated by the fact that many systems are now resorting to an
architecture with more than one core in parallel in order to increase its performance
capabilities. These multi-core systems use complex interconnection networks to
parallelize code and increase latency performance. To overcome the challenge of
designing complex architectures, several software tools for creating silicon
implementations of computer architectures and digital systems have been developed. Any
one tool covers just a small part of the simulation and design process needed to create a
complete chip design. A design flow is a combination of tools to cover a significant
portion of the design process. These tools include design flows for sub-micron
technologies targeted at education repositories, such as Metal Oxide Semiconductor
Implementation Service (MOSIS) generic technology tool sets for corporate instruction,
and research-targeted, variation-aware nanometer generic technologies, and limited
public-domain toolsets using open-source Electronic Design Automation (EDA) tools.

The main disadvantage of EDA tools for the implementation of VLSI architectures is that
they don’t readily support flexible design flows for the implementation of high
performance architectures. Corporations that specialize in the design and implementation
of high performance computer architectures usually have an inordinate number of
engineers at their disposal in order to target systems for a given performance metric.
However, sharing or dissemination of the EDA tool integration methods and specific
design flows corporations use to create a desired computer architecture objectives are not
available for the general public, making further improvements upon computer
architectures difficult or impossible to reproduce. More importantly, many corporations
can afford to sponsor application engineers (AE), from the EDA software vendors, on site
to assist in completing a given design objective.

According to International Technology Roadmap for Semiconductors (ITRS) 2003 [2],
two of the most daunting System on Chip (SOC) challenges are (1) design productivity
improvement by more than 100% per technology node and (2) management of power

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3

especially for low-power, wireless, multimedia applications. Current design tools and
flows, however, require excessive time, effort and design costs to achieve the power,
area, and performance requirements of future SOC solutions. The semiconductor industry
needs new design techniques, tools and flows for high-level synthesis that provide the
ability to quickly develop and evaluate complex SOC solutions. These techniques, tools
and flows should provide accurate area, delay, and power estimates from high-level SOC
architecture descriptions to facilitate design space exploration and the evaluation of new
power management techniques. They should also provide support for a wide variety of
components (e.g., standard cell and custom circuits, programmable processors, embedded
memory, and buses) and facilitate design reuse. Furthermore, the design tools and flows
should be well documented, easy to use, and publicly available to encourage new
research and innovation in SOC design.

Presently, there are several tools available including the SimpleScalar architecture
simulator [3] and Watch Power Analysis Framework [4] for estimating the performance
or power dissipation of processors and their memory system. These tools, however, do
not facilitate accurate modeling of complete SOC solutions, which often include
hardware accelerators, peripherals, and bus interfaces. Furthermore, since these tools do
not provide access to information about the underlying circuit and silicon
implementation, the accuracy with which they can model dynamic and static power
dissipation is significantly limited. Consequently, accurate modeling and evaluation of
complex systems has been marked as a significant challenge for system architecture and
digital system designers by a recent National Science Foundation panel [5]. Ultimately,
the NSF panel argues that simulation and benchmarking will require a leap in capability
within the next few years to maintain ongoing innovations in computer systems.

This paper details the research and development of high-level synthesis tools for System-
on-Chip platforms, specifically targeted at IBM 65 nm Complementary Metal Oxide
Semiconductor (CMOS) technologies, that (1) provide the ability to efficiently integrate
embedded memories, low-power/high-performance circuits and processors, and
communications structures, (2) combine synthesis and layout information to accurately
estimate area, delay, and power from high-level SOC architecture descriptions, (3)
facilitate rapid design-space exploration of SOC solutions, and (4) are well-documented,
easy-to-use, and publicly available for the Air Force Research Laboratory (AFRL)
personnel. It is also anticipated that many of the outcomes of this project will aid in the
development and deployment of future silicon architectures for any user that employs
trusted foundry fabrication capabilities.

This paper describes a number of techniques and design flows related to lowering power
dissipation within the design of computer architectures resulting from work done at the
AFRL in Rome, New York from 2007 until 2011. In this paper, a low-power digital
standard-cell library and design flow is discussed for IBM’s 65 nm CMOS technology
and its use in the creation of low-power structures in the design of high-performance
computer architectures. Several techniques, both circuit and architecture-based, are
discussed and results are shown using the design flow implemented for this research.
Specifically, multi-threshold CMOS (MTCMOS) is implemented within the library and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
4

compared versus a library supplied by ARM that only works with regular threshold
voltage transistors.

This report is organized as follows. Section 3 discusses the overall effort and the
background behind power dissipation and its relationship to design flows for nanometer
technologies. . Section 3.1 discusses a standard-cell library in IBM CMOS 10SF 65 nm
feature sizes for complex CMOS technologies, (10SF denoted the specific design
technology for 2010 fabrication runs) and the library’s effect on routing methodology
choice. Section 3.2 discusses some of the architecture ideas utilized to lower the total
power dissipation within digital circuits. Section 4 discusses the results from these
design choices and compares them versus the IBM-supplied ARM library. Finally,
Section 5 presents some brief conclusions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
5

3. METHODS, ASSUMPTIONS and PROCEDURES

The design and fabrication process used to produce silicon structures for state of the art
computer architectures is long and complicated. During the 1970s and up through the
early 1990s, most new computer architectures created were for ever higher performance
application specific systems or for high performance general processors [5]. In the late
1980’s, Field Programmable Gate Arrays (FPGAs) were created. Although FPGAs are
easy and far cheaper to design than most traditional computer architectures, they
consume significantly more area, delay and power for a given performance [6].
Consequently, for computer applications which demand a high amount of performance,
traditional but high design complexity architectures continue to be used.

The demand for increased speed, decreased energy consumption, improved memory
utilization, and better compilers for processors has become paramount to the design of the
next generation of computer architectures. To make matters worse, the traditional
challenges of designing digital devices with semiconductor technology has drastically
changed with the introduction of deep submicron technology. Designs that have long
been expanding in complexity through Moore’s Law have run up against severe
technological limitations below 130 nm. Where once it was easy to improve a design by
scaling the minimum feature size of a transistor, new basic features are now required.
Quality simulation adds new levels of design complexity.

Because silicon technologies are so small, designs can now implement millions and even
billions of transistors on a reasonably small die. Unfortunately, this leads to power
density and total power dissipation that is at the limits of what packaging, cooling, and
other infrastructure can support [8]. More importantly, in CMOS technologies below 90
nm, leakage current almost matches or surpasses that of dynamic power, making power
dissipation a major obstacle to designing complex SOC designs.

Although power dissipation complicates the design process for integrated circuits it does
not necessarily mean that designs cannot be efficiently accomplished. Energy
consumption and clock speed are closely linked and engineering choices or sacrifices are
normally required if a design requires a lower power factor or high clock rates.

Today some of the highest power microprocessors can dissipate close to 150 watts in an
area close to 1 cm square [8]. In fact, as the International Technology Roadmap for
Semiconductors (ITRS) predicted, the power for microprocessor reached a maximum of
198 watts in 2008 [2]. For virtually all applications, including general-purpose computer
architectures, reducing the power consumed by an SOC is essential to allow new features
and add performance to improve technology. Consequently, it is important to understand
how power consumption affects SOC designs to improve upon power efficiency.

The total power consumption of a digital logic circuit consists of two major factors. The
first part consists of dynamic power which is the power that is consumed when a device
is active. Typically, dynamic power is consumed when devices are active and are
switching back and forth. That is, they are based on what is supplied at the input of a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
6

circuit. If, for example, a circuit has lots of activity (e.g. within a router for the Internet),
it will typically consume lots of dynamic power. Conversely, applications that only
switch on during critical events, (e.g. sensors for abnormal events within automobiles),
typically consume very low amounts of dynamic power.

Dynamic power’s main impetus is the amount of switching that occurs during an event.
Since most CMOS circuits are composed of layers of Silicon Dioxide, which is an
excellent charge storage material, a majority of the switching power stems from the
power that is charged and discharged in the process of turning the transistor on and off,
respectively. This results in dynamic power with a squared dependence on the voltage:

 (1)

where CL is the load capacitance, VDD is the supply voltage, f is the frequency of the
system clock, and Ptrans is the probability of an output transition. In addition to switching
power, internal power also contributes to dynamic power. Internal power is related to the
speed with which CMOS gate is turned from on to off and back to on. This switching
causes both NMOS and PMOS transistors to be ON momentarily resulting in a short
circuit or “crowbar” current. Although the short circuit period can be small, it can
contribute to the total dynamic power if the input is ramped up too quickly [10]. Internal
or short-circuit power can be described as:

 (2)

where tsc is the time duration of the short-circuit current and Ipeak is the total internal
switching current. Although short-circuit current will not be discussed in this paper, for
lower-power consumption it is important to make sure gates are not floating on an output
when turning on certain power-gating circuits. That technique is discussed later, in the
results section.

The second major power factor, static power dissipation, is the power consumed when
devices are powered on but no signals are changing values. In the past, static power
dissipation, which is mainly dominated by leakage current in a gate, was either non-
existent or did not significantly impact a design. However, as the voltage and minimum
feature size of a transistor became smaller, the pronounced effect of leakage within a gate
made static power dissipation greater than dynamic power dissipation below the 90nm
technology node [9].

In the past, traditional designs resorted to lowering the power supply voltage to get an
exponential decrease in the power. This decision has been substantiated by Equation 1’s
power dissipation being dependent on the square of the supply voltage. The real
problem is that lowering the supply voltage causes the drive or drain to source current of
a transistor to decrease. The drain to source current can be approximated by:

 (3)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
7

where μ is the carrier mobility, Cox is the gate capacitance, W and L are the dimensions of
the transistor, VT is the threshold voltage, and VGS is the gate-source voltage. Since deep
submicron technologies have low supply voltages, having a low threshold voltage allows
CMOS designs to maintain good performance [10]. Unfortunately, as the threshold
voltage gets smaller, an exponential increase in the sub-threshold leakage current (ISUB)
occurs.

The subthreshold leakage current is the dominant element of static power dissipation. It
occurs when a CMOS gate is not turned completely off. A good approximation to the
subthreshold equation is shown in Eq. 4, where k is Boltzmann’s constant, T is the
temperature in kelvin, q is the charge of an electron, and n is a function of the device
fabrication process. The subthreshold leakage current for sub-90 nm transistors is a
major source of concern within current technologies, such as the IBM CMOS10SF 65 nm
technology originally considered for this work.

 (4)

Eq. 4 indicates that sub-threshold leakage, which is the predominant factor in static
power dissipation, depends exponentially on the difference between VGS and VT.
Therefore, as technology scales the power supply and VT down to limit the dynamic
power, leakage power grows exponentially, as was shown in [9]. To make matters worse,
sub-threshold voltage current increases exponentially with temperature, which also
complicates the process for low-power design.

Transistors are usually defined by their length and width, however, the length usually
establishes the minimum feature size of a transistor [6]. As technology moves towards
smaller feature sizes, the thickness of the oxide below the gate of a transistor also
decreases in thickness. Unfortunately, in current semiconductor processes the thickness
of the oxide is only several atoms thick. Consequently, the thinness of the oxide allows a
current that tunnels through the gate towards the channel of a transistor, so much so that
in current sub 90 nm technologies, gate leakage can be nearly 1/3 as much as sub-
threshold leakage [8]. In order to reduce the gate leakage, some manufacturers have
resorted to high-k dielectric materials, such as Hafnium, to keep the gate leakage in check
[11].

Another technique to reduce the leakage current is to use multi threshold voltage
transistors. Using this technique, high VT cells can be utilized wherever performance
goals allow the power dissipation to be kept in check. And, lower VT cells can be used
on a critical path to meet a specific timing. Specifically, having transistors that can
utilize different threshold voltages allows the reduction of the substrate current, as shown
in Eq. 4. The technology for IBM’s CMOS10LPe (2010 Low Power) 65 nm process
utilized for this work enabled the use of Regular VT, High VT, and Low VT transistors to
reduce the gate leakage [12].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
8

3.1 IBM Standard Cell Libraries

A high priority of any computer architecture created in silicon is to facilitate “paper to
product” in an efficient and pragmatic method. To accomplish this goal many designs are
created through complex and elaborate software programs that write netlists or a
structural description of silicon objects by means of a concise software system. When
engineers first started creating these silicon structures, the number of transistors was
small and integration that existed within a system design was simple and straightforward.
However, as the complexity of computer architectures increased, many of the software
tools became extremely elaborate and complex but narrowly focused on one or just a few
aspects of the complete architecture design. Therefore, engineers must expend significant
energy and time to design efficient streams of design tools, or design flows, to
accomplish the task of producing Very Large Scale Integration (VLSI) architectures.

Many of these design flows involve translating structural or behavioral descriptions of
computer architecture into a working silicon mask layer that can be fabricated. Although
this process is just an evolution of processing one netlist to another, the process has
dramatically changed from early designs involving several hundred transistors to current
SOC designs that encompass close to or exceed 1 billion transistors [14]. To make
matters worse, power and performance optimization issues have complicated the entire
process [15].

Standard-cell designs involve taking pre-made layout elements, such as an AND or
NAND gate, and having software stitch the elements together via placing each routing
wire between known pins. Early layout editors, such as the Magic Layout Editor, had
built-in routers to allow designers to avoid having to worry about laying out wire between
two points [16]. However, as more points and pins were created, the performance cost
for a given route increased and there was a dramatic need for more efficient algorithms to
deal with congestion and optimization [17].

Although the use of standard-cell libraries is not new, their implementation into a design
flow has not been widely studied, mainly because much of the design process has been
become a black art. In fact, many of the standard cells from initial creators can only be
utilized by instantiating or inserting their layout at the foundry when a design is
complete. Details of the standard cell’s characteristics are not given to designers outside
the foundry. A designer, who wants to create a new layout library, must learn all the ins
and outs of a given standard cell by trial and error. Unfortunately, most designers in
industry cannot afford this time consuming process and, thus, resort to using libraries that
are purchased from companies that specialize in this area.

Fortunately, there are several limited design flows available, often free of charge from
educational institutions. Unfortunately, most of these design flows only contain a limited
number of standard cells and components, and are not geared toward complete SOC-
based design. Virginia Tech offers an extensive library for the Taiwan Semiconductor
Manufacturing Corporation, TSMC 0.25 μm process [18]. Although these standard-cell
libraries are helpful at learning some of the basics, they tend to skip over many of the
details of more proprietary, optimized commercial standard-cell libraries. Furthermore,
since current design flows are often not well integrated with design tools for high-level

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
9

synthesis or design space exploration, there is a significant barrier to high-quality
research and education in this area. This project began with adapting standard-cells using
the IBM CMOS10SF 65 nm process while utilizing the author’s experience in creating
design flows both academically [19-22] and with industrial partners Cadence Design
Systems, Synopsys, and Mentor Graphics.

The IBM CMOS 10SF is a 65 nm fabrication process created by IBM. This process
provides 9 metal layers (M1, M2, M3, M4, B1, B2, B3, EA, EB) plus LB (for transfer off
chip) to DV (glass cut). The technology is a nanometer-based technology that gives
high-performance, while still trying to maintain somewhat low power designs. IBM
originally created this process for static random access memory, digital logic, mixed-
signal, and mixed-voltage input/output applications [23]. Although this technology is
robust, it presents certain challenges, since its operating voltage is relatively low at a VDD
of 1.0 Volt.

Standard-cell libraries usually utilize two methodologies for determining where a pin can
route. The first methodology is called “grid-less placement and routing” which treats
every routing point as a Cartesian coordinate [23], [24]. Although this method
accomplishes the task well with high-performance computers capable of processing
billions of operations per second, its algorithm has a high processing overhead.
Consequently, grid-less placement and routing tends to be avoided in commercial
placement and routing software tools. Although grid-less placement and routing works
well for grid-based placement and routing, implementation is an NP-hard problem that
can cause problems for cases when limited area or high amounts of constraints are given
for a problem [24]. On the other hand, “grid-based placement and routing” works well
with most tools and can handle large numbers of transistors with a surprising amount of
efficiency. Therefore, for this work, grid-based placement and routing was chosen to
minimize the complexity as well as have the ability to interface to commercial-based
EDA tools.

Grid-based placement and routing is organized into grids that are chosen by design. It is
important that there is a sufficient size for each grid so that wires can follow the grid and
connect around each junction. For this paper, it is assumed that connections are
orthogonal, however, they can easily be non-orthogonal with more complexity added to
the placement and routing algorithms. Standard-cell libraries are designed such that each
cell is set at the same height. Although cells can be at different heights, placement and
routing can get more congested with this approach. Since most libraries are designed
such that they have many gates within them, including ones with different drive
strengths, it is important to make the height of the cell relatively large. However, making
the height too large can cause low amounts of density within the design.

Placement and routing algorithms work with two basic elements to create a connection.
The first element is a contact, called a via, where a large majority of connections are
between two metal layers. The second element is wires, which connect between each pin
or contact. A contact or via is utilized to connect to a pin, which is either a final
destination or beginning of a connection, or at an intermediate connection that may be
part of a larger route. To set the correct grid distance, or pitch, between two wires, it is
important to factor the via and wire rules into the computation. There are two basic rules

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
10

related to pitch. The first pitch rule is called via-to-via distance and although it is a
common definition for pitch, it can waste space between two wires that do not have a
connection. Consequently, for this project we chose a line-to-via pitch to allow the wires
to be closer together and allow more routing within a given area. Line-to-via is more
common in industry. Figure 1 shows an example of the two pitch designations.

Figure 1. Pitch Examples

In this design process, all grids are assumed to be equal for both horizontal and vertical
distances. This was chosen to simplify the computation for each distance, however,
many design flows use different dimensions for pitches in the 2D horizontal and vertical
directions for individual metal layers. To make the wires less congested, each wire in a
layer is assumed to navigate either horizontally or vertically and subsequent layer wires
are at 90 degrees, resulting in either HVH (Horizontal-Vertical-Horizontal) or VHV
(Vertical-Horizontal-Vertical) routing. In this work, odd metal layers are assumed to be
routed horizontally (e.g. metal1), whereas, even metal layers are assumed to be routed
vertically (e.g. metal4). That is, a HVH routing methodology is utilized.

Contacts or vias are usually connected so that they minimize the connection between two
wires [6]. In order to save space it is preferable to have contacts, between metal layers
that are more than one metal layer apart, aligned above each other regardless of the metal
layer. For example, if a route is to connect between metal4 and metal1, it would be
easiest to have the connection happen straight downwards through the levels of metal 3
and metal 2. Because this connection happens on-top of each layer, it is called a stacked
via. In early designs, such as those with only 2-3 layers of metal, stacked vias were
physically difficult to implement. However, with newer technology and machinery to
fabricate integrated circuits, stacked vias are extremely common. The IBM CMOS 10SF
65 nm process has stacked vias, therefore, the design is chosen such that contacts or vias
can be situated on top of each, as shown in Figure 2.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
11

Figure 2. Stacked Vias

Although grids are common in standard-cell designs, designers of common standard-cell
libraries tend to forget to keep the grids in multiples of each other for each subsequent
metal layer. Consequently, some metal layers (e.g. metal1 and metal3) may not align
and, therefore, a stacked via cannot be connected nicely without a jog. Although a jog
will work, it tends to increase the capacitance within a design. Therefore, it is highly
advisable, as with this design, to keep each metal direction (i.e. metals in the same
direction – metal1, metal3, metal5, …) within a multiple of each other to allow each
metal layer to overlap for stacked vias if needed. For example, if M3:M1 layer have a
track pitch ratio of 11:8, both horizontal tracks would seldom be on top of each other
making it difficult or even impossible to create a M3 M1 contact. Therefore, for any
standard-cell library track pitch ratios should use simple ratios such as 1:1, 1:2, 2:3, or
3:4 between adjacent same direction routing tracks. Figure 3 shows an example of a 1:2
M3 M1 ratio.

Figure 3. Example Pitch Definitions

In this design, the tracks were designed to have 300 nm pitch distances both vertically
and horizontally. To allow an ample amount of room between both power rails, 9 grid
distances were chosen between VDD and GND rails allowing a 2.70 μm cell height. This
height allows simpler gates to be designed while not wasting a lot of space. However, the
space is just enough to allow more complicated gates like a Full Adder cell, to easily be
integrated within the rails.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12

The IBM CMOS 10SF 65 nm CMOS technology has the ability to adapt to many
different parameters. One particular parameter is called the metal stack and allows a
customer to choose the number of metal layers for 1X, 2X, and 4X metal layers within
the context of a design. Since it is easy to add more layers later, the stack can easily be
extended to more metal layers.

The pitch definition is chosen such that it always has enough give-and-take to allow extra
routing between the layers, but still overlap to allow stacked vias. The cell's width
resolution (multiples of 0.x um) is determined by the contact CA (CA width + chosen CA
spacing). The CA width is 0.09 µm and the CA spacing is 0.21μm giving a resolution of
0.3 μm. The other constraint is that the cells’ width needs to be multiples of 0.2µm to get
rid of the gaps between cells. Due to rule 203aR in the IBM design manual, the minimum
CA spacing is 0.16 μm (center to center = 0.25µm) [12]. This plus the CA width = 0.16
μm + 0.09 μm = 0.25 μm and, therefore, in this work 0.3 μm is chosen. Nevertheless rule
203 says spacing can be as small as is 0.105 μm, so it might be possible to select 0.2 μm
resolution (CA width + chosen CA spacing = 0.195) however, 0.3 μm was chosen just to
make sure there is enough room for a route.

The metal pitch rules come in two forms: one is designed minimum and the other is
considered a conservative rule denoted by appending a R after the rule (e.g. Rule 203R).
IBM recommends that all conservative rules be utilized, therefore, this work chose to use
the conservative R rules [12]. Consequently, the metal pitch was defined by a via-to-line
distance assuming ½ the via distance on one side and ½ the metal line. For example, for
metal1, the pitch is defined as:

 (5)

which gives

 (6)

As stated before, to keep the M1 M3 ratios simple along with the other layers, a 2:3
pitch was chosen which augments this distance from 0.24 μm to 0.30 μm, just to be
conservative. The same procedure was completed for the other layers. The final values
for pitch are shown in Table 1. It is important to understand that the values in Table 1
can be easily augmented to add more metal layers within the stack.

Once a pitch was defined, a standard-cell library and its design flow were created.
Unfortunately, many tools still rely on different file formats to set up the geometry to
allow all placement and routing to be done efficiently. In order to allow the standard-cell
library to be easily defined and implemented, an automatic standard-cell library
generation tool called Synopsys Cadabra was utilized. Cadabra takes an architecture
description of a cell, defined as a spice netlist, and generates layout based on a defined
rule set. Although the automatic library generation is efficient, the rules still need to be
added manually and tested for several different scenarios to see if they work correctly.
However, if a designer adequately defines the pitch, as explained previously, the job of
defining the rules within the automatic layout generation is easier to implement.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13

Table 1. IBM CMOS10SF 65 nm Pitch Definitions

Metal
Layer

Direction Pitch
[μm]

Ratio

M1 H 0.30 -

M3 H 0.20 2:3

M5 H 0.20 2:3

M2 V 0.20 -

M4 V 0.20 1:1

M6 V 0.20 1:1

The design flow shown in Figure 4 was then integrated with parameters cells provided by
IBM. Cadence Design System’s Virtuoso was used for layout creation and schematic
entry. However, the design flow was designed to work with Synopsys and Cadence
Design System synthesis engines. The standard-cell library was also created with
baseline cells within its library, so that Synopsys DesignWare Intellectual Property could
also be utilized and integrated within a design [25].

Figure 4. Proposed Design Flow using Commercial-based EDA tools

Cadence Design Systems’ SOC Encounter was utilized for place & route, and Mentor
Graphics’ Calibre was used for Design Rule Checking, Electrical Rule Checking, Layout

Verilog/VHDL

Synthesis

Place & Route

Simulation

Analysis

Functional / Switch
Level Verification

Constraints
Cell timing models

Gate Level Netlist

Wire Delays

Switching Activity

Flow Inputs Flow Outputs

Algorithm Description

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
14

versus Schematic, and Parasitic Extraction (PEX). The PEX was extremely important for
power dissipation estimation, since knowledge of the capacitance in the wire was
required to adequately address the total static and dynamic power dissipation within a
design.

The design flow was planned to easily integrate within the Process Design Kit (PDK) that
contains all the Parameterized Cells or p-cells within the CMOS 10SF library. More
importantly, Regular Voltage Transistors, Low Voltage Transistors, and High Voltage
Transistors were all included in the library amounting to a 93 cell library that was
completely characterized for power and delay. This allowed simulations to accurately
predict power dissipation and its associated propagation delay for various computer
architectures.

To add to the robustness of the standard-cell library, six custom parts were also included
that allowed memory storage to be integrated within the design structure. Each memory
device was designed to be a robust register file with fast decoding and fast access. The
six register files were all sized to provide a cycle time of 2 ns and also have several read
and write ports to allow simultaneous reading and writing in common within
microprocessors. Figure 5 shows the layout of a single read and write port 32-bit, 32-
word register file designed for this library. Each register file was designed to have no
Design Rule Check (DRC) violations and completely verify through Layout Versus
Schematic (LVS) checks.

Figure 5. 32-bit x 32 word Single Write/Read Port Layout

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
15

3.2 Architecture Design Decisions for Lower Power Dissipation

Although power dissipation is an important factor within the design of computer
architectures, choosing technology that impacts switching activity or utilizing low-
leakage transistors is not the only option for the pragmatic designer. If designers are
going to be successful at obtaining their goals, it is important to utilize complete
architectures for lower power dissipation. It was also found to be important to have
robust and repeatable scripts that allowed designs to be analyzed and properly.

In 2008, although the standard-cell library was created and appropriately characterized
there were questions related to the leakage that this technology could produce. To offset
concerns and potentially limit losses, changes in the technology were enacted to move
towards a low-power technology, IBM CMOS 10LPe. Although the 10SF and 10LPe
technologies are similar, they had significantly different design rules, thus, potentially,
causing problems with the standard-cell designs. To offset these problems, standard-cell
and memory libraries from Virage Logic were acquired. Regardless of the standard-cell
library and design rule changes, the problem related to design flow integration remained
to be explored and solved.

The instruction command sequence in EDA tools can be complicated. For example,
Cadence Design Systems had over 3500 pages of text references for many commands
that were actually either outdated, retired, or just repetitive. This can complicate the
structure in which EDA tools are employed. For example, some commands can be non-
existent or even be limited in their execution, because they are obsolete.

To simplify the process, commands were emulated based on Cadence Design System
examples called the Foundation Flow Template System. The Foundation Flow is a
derived set of current commands that allow basic structures to be repeated without the
problems caused by outdated or obsolete command structures. Although the Foundation
Flow scripts are well written, they are not incorporated with commands to target a
specific design task or to obtain a power figure. Therefore, the Foundation Flows were
heavily modified in Tcl to be robust, easy to edit, and repeatable with the IBM
CMOS10LPe design library.

The main structure of this design flow allows decisions for low-power dissipation to be a
healthy design choice and facilitates accurate simulation. The key element of this new
flow is the use of the public-domain tool Makefile to aid in a repeatable sequence of steps
within the backend design process. The basic flow structure is broken down into nine Tcl
programs that run in succession. The nine Tcl programs are shown in Table 2.

It is important to emphasize that the new scripts are easily configurable and can be
augmented for specialized instructions, such as bump-cell insertion in flip-chip designs.
To add extra scripts, modifications are added to the setup.tcl file to post-process after
each subsequent Tcl script. For example, if a user wanted to run a script after place.tcl,
there is a location in setup.tcl to run a post-place.tcl, provided it is available. The
setup.tcl contains default parameters, such as pitch and location of Layout Extraction
Format files. A secondary Tcl script called init.tcl was written which contains routines to
help with power rail adjustments and additions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
16

Table 2. Basic Foundation Flow Script Flow (in run order)

Program Task

Init.tcl Main initialization and Floor
planning

Place.tcl Placement and Partitioning of
design

Pre-cts.tcl Pre Clock-To-Synthesis
Optimization

Cts.tcl Clock-To-Synthesis (CTS)

Post-cts.tcl Post CTS Fixing

Route.tcl Global/Detail Routing

Postroute.tcl Post route Optimization and Hold
fixing

Postroute_si.tcl SI Hold Fixing and Optimization

Signoff.tcl Final signoff timing and verification

The scripts were tested on several design structures and sample netlists of various degrees
of complexity. The key element to any of the scripts is that they were designed to be
simple and easy to use for any design. That is, any design could be deployed and
reloaded from any part of the design flow. For example, if a design had several errors
within the route stage, the design could be loaded at the stage before the route stage (i.e.,
postcts.tcl), and errors could be corrected and integrated within the flow. In fact, this
scenario of modifications had been previously been proposed for design flows to get the
best optimizations within a design for a particular constraint [26]. Figure 6 demonstrates
a sample design that has been placed and routed through the scripts as well as verified
through DRC and LVS.

A script was also written to allow subsequent tools to adequately address power and
energy consumption. The key to creating these results originally comes from the
simplicity and repeatability of the original scripts created within this grant. Another key
finding is that the scripts not only allow power results to be easily computed, they also
allow many designs to be integrated into a stable set of design scripts and numbers to be
targeted for a design. Currently, the scripts were designed for both the Synopsys and
Cadence Design System (CDS) toolsets allowing mixing of program flows and vendor-
driven EDA interactions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
17

Figure 6. Place/Routed 500 MHz MIPS Processor Using Proposed Design
Flow

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
18

4. RESULTS AND DISCUSSION

The design flow was created in such a way that environmental variables were utilized to
enable it to be installed anywhere. For example, all the libraries refer to an
environmental variable called $OSU_IBM65 which points to the release directory. The
library created for this research, as well as the library created by ARM for the IBM
CMOS 10SF 65 nm technology was located in this directory. As stated previously, the
ARM library does not invoke any low threshold voltage transistors and, thus, could
potentially consume significantly more power.

Scripts were designed to work with the design flow, so that any design could be easily
created from a HDL design into a mask layout. All standard-cell designs and memory
elements were created using scripts that either generated a place and route design or
initiated a language within the Cadence Design System tools to create a memory array.

 As previously stated, power dissipation is an important element within any computer
architecture, however, the computation of power can be difficult to compute because of
the complexity produced by current designs. Consequently, the design flow presented
here has several different power level estimation tools that can either estimate the power
during synthesis with no parasitic extraction of the wires (e.g. through Synopsys
PowerCompiler or PrimeTime) or computed more accurately using an extracted SPEF
file (e.g. through Synopsys nanosim). Scripts were created that allowed all designs to be
tested effortlessly for timing, area, and power parameters. More importantly, all the
scripts can be modified, so that power, delay, or area could be targeted as an optimized
constraint for a given architecture. Table 3 shows some typical numbers achieved for the
IBM CMOS10LPe 65 nm developed design flow.

 Table 3. Area/Delay Results for Sample Designs

Design
Synthesis Post-Synthesis

Gates Delay
[ns]

Area
[μm2]

Delay
[ns]

IEEE
754R
Floating-
Point
Adder

4,493 2.00 24,115 3.070

MIPS
R2000 4,984 1.05 22,563 2.122

64-bit
CLA 568 1.99 2,613 2.287

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
19

 All designs were created and completed through the use of scripts created for this project
to interface the HDL definitions. Also, many of the designs in Table 2 were created
using Synopsys DesignWare Intellectual Property engines giving the flow extended
processing capabilities.

Although the design flow created for this work was easy to apply for any computer
architecture, the real power is the ability to apply the design parameters for achieving
lower power dissipation for designs that have multiple viewpoints, such as memory and
processors. The scripts were successful in rapidly creating a design for a July 2010
fabrication run using the IBM CMOS10LPe library and several memory blocks from
Virage Logic. The design was taped out at 125 MHz and preliminary tests indicated the
design powered up correctly. In addition to the processor design created at the Air Force
Research Laboratory, the device also included an asynchronous Field-Programmable
Gate Array created by Cornell University.

Figure 7. Final Layout for July 2010 T using IBM CMOS 10LPe Technology

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
20

5. CONCLUSIONS

This report describes research that was conducted for the Air Force Research Laboratory
in designing low power libraries for computer architectures. With the combination of
architecture and circuit-based enhancements, significant improvements over previous
techniques can be seen.

The design flow was designed to work out-of-the-box and allow anyone to design fast
and efficient designs with the IBM CMOS 10SF or CMOS10 LPe 65 nm libraries. More
importantly, it allows multiple Electronic Design Automation tools to be efficiently and
effortlessly utilized to create designs and verify their timing and/or power constraints.
There is still more significant work that can be done by modeling better power variations
as well as incorporating design choice what-if scenarios. Future work will be ongoing in
this area and produce an environment that can be integrated easily with any trusted
foundry customer.

Over the course of three years, specific achievements resulted in the following items:

• Design flows created that were enhanced for Cadence Design System and
Synopsys based EDA toolsets.

• A vibrant and modular standard-cell library and six register files for the IBM
CMOS10SF technology.

• Design Verification scripts for timing, voltage, and power considerations.

• Modular Foundation-based script vehicles that allow rapid development of
Silicon structures.

• Tape-Out procedures and methodologies for the IBM CMOS10LPe technology.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
21

6. REFERENCES

[1] Intel Corporation, “DOE accelerated strategic computing initiative TFLOPS system,”
1996.

[2] International Technology Roadmap for Semiconductors, Semiconductor Industry
Association, 2003.

[3] D. Burger and T. M. Austin, “The Simple Scalar Tool Set, version 2.0,” University of
Wisconsin at Madison Technical Report, TR 1342, 1997.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Watch: A Framework for Architectural-
Level Power Analysis and Optimizations,” in Proceedings of the International
Symposium on Computer Architecture, 2000, pp. 83-94.

[5] K. Skadron, M. Martonosi, D. I. August, M.D. Hill, D. J. Lilja, and V. S. Pai,
“Challenges in Computer Architecture Evaluation,” IEEE Computer, 2003, pp. 30-36.

[6] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 3rd Edition, Addison Wesley, New York, 2004, pp. 117

[7] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” Proceedings
of the ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays, 2006, pp. 21-30.

[8] M. Keating, D. Flynn, R. Aitken, A. Gibons, and K. Shi, Low Power Methodology
Manual: For System on Chip Design, Springer, New York, 2007, pp. 314

[9] J. E. Stine and J. Grad, “Low-Power and High-Speed Addition Strategies for VLSI,”
International Conference on Solid-State and Integrated Circuit Technology (ICSICT),
2006, pp. 1610-1613.

[10] K. Roy and S. C. Prasad, “Low-Power CMOS VLSI Circuit Design,” Wiley-
Interscience, 2000, pp. 118

[11] R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin,
M. Metz, A. Majumdar, and M. Radosavljevic, “Application of High-K Gate
Dielectrics and Metal Gate Electrodes to Enable Silicon and Non-Silicon Logic
Nanotechnology,” Microelectronic Engineering, Vol. 80, 2005, pp. 1-6.

[12] CMOS 10SF (CMS10SF) Technology Design Manual: ES 70P3848. IBM, 2007.

[13] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS
Circuits, Morgan Kaufman Publishers, New York, 1999, pp. 328

[14] P. R. Groenveld, “Physical Design Challenges for Billion Transistor Chips,”
Proceedings of the International Conference on Computer Design, 2002, pp. 78-83.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
22

[15] M. Pedram and J. M. Rabaey, Power Aware Design Methodologies, Kluwer
Academic Publishers, Norwell, MA, 2002.

[16] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor,
“Magic: A VLSI Layout System,” University of California Berkeley Technical
Report, 1983.

[17] N. A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer
Academic Publishers, Norwell, MA, 1998.

[18] J. B. Sulistyo and D. S. Ha, “Developing Standard-Cells for TSMC 0.25um
Technology Under MOSIS DEEP Rules,” Technical Report Virginia Polytechnical
Institute and State University, VISC-2002-02, 2002.

[19] J. Grad, J. E. Stine, and D. D. Neiman, “Real-World SOC Experience for the
Classroom,” International Conference on Microelectronic System Education, 2005,
pp. 49-50.

[20] J. E. Stine, J. Grad, I. D. Castellanos, J. M. Blank, V. B. Dave, M. Prakash, N.
Iliev, and N. Jachimiec, “A Framework for High-Level Synthesis of System on Chip
Designs,” International Conference on Microelectronic System Education, 2005, pp.
67-68.

[21] J. Grad and J. E. Stine, “A Standard-Cell Library for Student Projects,”
International Conference on Microelectronics System Education, 2003, pp. 98-99.

[22] J. E. Stine, I. D. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.
Franzon, M. Bucher, S. Basavarajaiah, and R. Jenkal, “FreePDK: An Open-Source
Variation-Aware Design Kit,” International Conference on Microelectronic Systems
Education, 2007, pp. 173-174.

[23] IBM, “CMOS 10SF Technology Design Manual,” Technical Report, 2009.

[24] S. H. Gerez, Algorithms for VLSI Design Automation, Wiley and Sons, New
York, 1998.

[25] M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design,
McGraw-Hill, New York, 1996.

[26] A. Kuhlmann and L. P. P. P. Van Ginneken, “Grammar-based optimization of
synthesis scenarios,” in IEEE International Conference on Computer Design, pp. 20-
25, 1994.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
23

LIST OF ACRONYMS

ACT Asynchronous Circuit Tools

AFPGA Asynchronous Field Programmable Gate Array

AFRL Air Force Research Laboratory

ASIC Application Specific Integrated Circuit

CB Connection box

CMOS Complementary Metal Oxide Semiconductor

DARPA Defense Advanced Research Projects Agency

DRC Design Rule Checker

EDA Electronic Design Automation

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

ITRSI/O International Technology Roadmap for Semiconductors
Input/Output

I/OIP Input/Output Intellectual Property

IPLB Intellectual Property Logic block

LBLUT Logic block Lookup Table

LUT Lookup Table

LVS Layout versus Schematic

MOSISSBSRAM Metal Oxide Semiconductor Implementation Service Switch
box Static Random Access Memory

SBSRAMVHDL Switch box Static Random Access MemoryVery High Speed
Integrated Circuit Hardware Description Language

SRAMVHDLVLSI
Static Random Access MemoryVery High Speed Integrated
Circuit Hardware Description Language Very Large Scale
Integration

TSMCVHDLVLSIVPR
Taiwan Semiconductor CorporationVery High Speed
Integrated Circuit Hardware Description Language Very Large
Scale Integration Versatile Place and Route

VHDLVLSIVPR
Very High Speed Integrated Circuit Hardware Description
Language Very Large Scale Integration Versatile Place and
Route

VLSIVPR Very Large Scale Integration Versatile Place and Route

VPR Versatile Place and Route

	LIST OF FIGURES AND TABLES
	1. SUMMARY
	2. INTRODUCTION
	3. METHODS, ASSUMPTIONS and PROCEDURES
	3.1 IBM Standard Cell Libraries
	3.2 Architecture Design Decisions for Lower Power Dissipation

	4. RESULTS AND DISCUSSION
	5. CONCLUSIONS
	6. REFERENCES
	LIST OF ACRONYMS

